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The question of the stability of steady motion of holonomic mechanical systems with cyclic 

coordinates has been studied in many books and papers (for example, [I to 91) but the sub- 

ject evidently cannot be considered exhausted. In 1957 Ishlinskii [lo] published an ex- 

ample of bifnrcation of steady motions which did not lead to unstable modes. A second, 

similar example, has recently been given by Neimark aud Fufaev [ll]. Noting the 

‘unusualness of the bifurcation the authors of [II] assert that it is associated with the 

existsnce of a set of steady motions. 

In what follows we consider the stability of steady motions of holonomic mechanical 

systems; ase is made of the theorems of Ronth, Poincar& Kelvin and Chetaev and some 

new results are obtained. By way of illustration sn example is considered, taken from [II]. 

It is shown that with the proper choice of parameters in this example no singnlarities occur. 

The method evolved in the paper is characterized by a nniqae approach to the study of 

the stability of motion of various different mechanical systems and enables us to obtain 

relatively easily the necessary and sofficient conditions for ‘secnlaf (in a particular 

sense) stability of steady motion. 

1. Consider a system of material points with ideal geometrical constraints nnder the 

action of potential forces. Let @ (i = 1, . . ., ?z) denote the independent Laugrangian 

coordinates of the system; q: and p . generalized velocities and impulses ; T and n kinetic 

and potential energies of tbe’syste: and L = T - II a Lagrange function. 

As fundamental variables which define the state of state of the system at any instant 

of time t, we use the Ronth variables [9] 

Q+, qi’ (i=f, . . . . k), 

We iatroduce the Routb fnnction 

We assume that this function is not explicitly dependent on time, and write the equations 

of motion for the system iu the form of Routh’s equations 

(1 aI? air () 

__-- -= 

dt dq,’ %i 
(i=l, . .,I;) (1.2) 
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4, aR +a 8R 
--t dt = ap, -=z rzt (a=k+l, . . . . n) (1.3) 

Equations (1.2) and (1.3) admit the energy integral 
k 

H=~q,.$-R=colrst (1.4) 

i=l t 

Suppose that the coordinates qoare cyclic, i.e. that c?R / 8qa = &Then we bu- 

mediately obtain from Equations (1.3) the first integrals 

Pa = G (a=k+l, . , ., /1) (1.5) 

where caare arbitrary constants of integration. Thus Equations (1.2) contain only the 

variables qi together with their first and second derivatives with respect to time t, and the 

constants es. Th ese equations can be looked upon as the equations of motion of a system 

with k degrees of freedom, characterized by the Lagrangian function R (Qi, Q<~, c=). We 

shall call this a reduced system corresponding to the initial mechanical system and char- 

acterized by the Lagrangian function & (c&, &‘, &‘). After system (1.2) has been in- 

tegrated the cyclic coordinates can be found from Equations (1.3) in the form of quadratures. 

By Expression (1.1) the Routh function is 

R =Ra+R1-W 

in view of which Equations (1.2) assume the form 

I, j=r 

i=l 

denote respectively the kinetic and potential energies of the redaced system and the part 

of the Routh function which is Iinear in the velocities q: and 

&rj 8ai 
gij = q - $- * gij = - &j 

we ~rosco~ic coefficients. The function R, will be the positive definite quadratic form 

of the velocities Qi’ (i = 1, . . _, ii). 

Thus if the initial system is under the aotion of potential forces, derivatives of the 

force function fl, then the reduced system is under the action of potential forces, deriv- 

atives of a force function W, and gyroscopic forces. The latter will not exist only when all 

th e gyroscopic coefficients gtj = 0 (i, j = 1, . . ., k). In this case the system is called 

gyroscopically unconstrained. We further assume that the function if’ is a continuous function 

of the coordinates qi with continuous partial derivatives with respect to pi. 

2. Under certain initial conditions Qi’t i.~**” = 0, Pa0 systems with cyclic coordinatas 

under the action of potential forces can undergo steady motion in which the positional 
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coordinates qi and the velocities of the cyclic coordinates qa retain their initial values and 

cyclic coordinates vary Iinearly with time. For fixed values p4* = C, the constants qio 

can be found from the equations 

(i = 1. . .) k) (2.1) 

which are the equations of equilibrium of the reduced system. 

The potential energy j+’ (Q%, c,) of the latter depends not only on the positional 

coordinates qi, but also on the arbitrary constants C, (a = k $- 1, . . ., n), which can 

be looked upon as parameters. A general theory of the equilibrium of such systems for 

various values of the parameters has been proposed by Poincare’ [3 and s]. 

Let 

gi =I@@) (Ck+l, . . . , cn) (i = 1, . . ., k; s = 1, 2, , . .) (2.2) 

represent the roots of Equations (2.1); we assume that the functions (p:‘) (c,) are conti- 

nuons functions of parameters ea. Thus the steady motions form sets of dimension n - k, 

each point of which is a stationary point of the potential energy I’V for fixed ea. 

In the n-dimensional space G of the variables qi and c,Equations (2.2) define hyper- 

surfaces cQ which together form some real hypcrsarface B, different points of which cor- 

respond to possible states of steady motion. 

The roots (2.2) of Equations (2.1) are determined uniquely at all ordinary points of the 

space G where the Hessian of the potential energy of the reduced system 

aw 
/_l= -- I II al&aqj #O (2.3) 

Points at which A = 0 are called critical or bifurcation points; in the neighbourhood 

of such points Equations (2.1) do not have a unique solution. At such points different hyper 

surfacss C, may intersect or have tangential hyperplanes orthogonal to the subspace Cz 

of the space G. 

Consider the question of stability in the Liapnnov sense of some steady motion cop 

responding to a specific point on the surface B. Without loss of generality we can assume 

that for fixed values of c,this steady motion corresponds to zero values of the function W 

and all the positional coordinates qi = 0. 

Let us now apply to the system sufficiently small initial perturbations, assuming that 

in the perturbed motion 

qa = !?a” + Ea, Pa =I-- PaOf % 

and retaining the previous notations for the positional coordinates and their velocities, The 

eqnatfona of the pertarbed motion will now be given by Equations (1.6) and the equations 

obtained from (1.3). In explicit form these equations are as follows: 

(2.4 

(2.5) 
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@a 3R 
--&- = aq, -94a**, 

drla -- -- dt 0 (a=k$-f,.... n) 

From the first group of equations of (2.5) we find that steady motion is unstable with 

respect to cyclic coordinates qain tire general case of Q~” $= - aR / a$~. Consequently, 

it is reasonable to speak of the instability of steady motion only with respect to the quan- 

tities qi, qf and paor to some continuous single-valued bounded functions of these quan- 

tities. 

The equations of perturbed motion have, evidently, the energy integral 

N = Ra + W = const (2.6) 

and also the cyclic first integrals 

?jLl = const (2.7) 

Due to the existence of integrals (2.7) motion of a system with cyclic coordinates is 

obviously stable with respect to p,. 

With arbitrary sufficiently small perturbations the equations of perturbed motion will 

therefore be given by Equations (2.4) for the reduced system near its equilibrium position, 

and they will depend on fixed values of Q + 0. 

But in thia case it may happen that 

i.e. the equilibrium position qi = 0 of the reduced system will not satisfy Equations (2.4) 

and its perturbed motion can be accomplished under constantly acting perturbations, which 

belong to the category of potential perturbations ([S] , p. 255). In order not to consider these 

perturbations we can set, as is usually done, all tja = 0, i.e. confine our attention to a 

study of stability under perturbations which do not alter the constants cs. Stability of this 

sort is called Liapunov conditional stability. 

Note that the supposition of the imperturbability of cyclic impulses pa= caindicates 

only that to every perturbed motion of the system there corresponds a definite steady motion 

171. In fact, if we impart to the unperturbed motion, for which p,= es, arbitrary sufficiently 

small pe~urbations, we can consider the perturbed motion of the system as described by 

Equations (2.4) for fixed values of Q # 0, as perturbed motion corresponding to steady 

motion for which& = C, + Q, and gi = it,,‘, and 

where we can make /4’<0 1 as small as we like. 

It is well known that the stability of steady motion can be effectively investigated by 

using Routh’s theorem cl], which can be formulated as a particular case of a corollary of 

Liapnnov’s stability theorem ([5] , p. 19). A ccording to this theorem if for given p,= cathe 

energy integral H = const has an isolated minimum, then the steady motion is stable, at any 

rate for perturbations which do not alter the values of the integrals p,= co. 
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Liapunov [4] observed that if the integral H = const has a minimum not only for the 

given values of pa= cobat also for any sufficiently close to them PO =: C, f ?la, and 

if the values of the variables pi which make H a minimum are continuous functions of pa. 

then the steady motion is stable for any perturbation. 

This theorem can easily be proved by the method of normal E-proofs. We shall not, 

however, dwell upon this, but simply observe that geometrically the theorem is almost 

obvious. Since Rs is positive definite the integral H has a minimum when and only when 

the function W has a minimum. If the unperturbed motion corresponds to some point on the 

surface B which does not coincide with the critical point but corresponds to the isolated 

(for the given p,= co) minimum of the function W, then for sufficiently small perturbations 

To # 0 the steady motion remains all the time in the neighbonrhood of the minimum of W 

corresponding to the values pa= c,+ qa and is absoIutely stable. 

Since Routh’s theorem in effect amounts to Lagrange’s theorem for the reduced system 

there exists a well-known analogy between steady motion and the equilibrium of holonomic 

systems nnder the action of potential forces. In general, in problems of instability no similar 

analogy exists, since the steady motion may be stable also when the function W has no 

minimum - in such cases gyroscopic stabilization takes place [5]. 

Consequently we can talk of the converse of Routh’s theorem when the fttnction Sv has 

no minimnm only on certain supplementary conditions. The most simple case of the con- 

verse of Ronth’s theorem is a gyroscopieally unconstrained system on which no gyroscopic 

forces act. In this case the theorems of Liapunov and Chetaev [S] on the converse of 

Lagrange’s theorem are fully applicable. 

In the case of gyroscopically constrained system the problem becomes more complex. 

One particuIar case of the converse of Routh’s theorem is the well-known theorem of 

Kelvin, according to which it can be said that if the number of negative roots of the 

equation 

A (h) = II Cij -+j?+o, gjJ f i =a, 
lo i#jJ 

(2.81 

is odd or if there are no zero roots, then the motion is unstable. If the number of negative 

roots ia even, gyroscopic stabilization is possible. 

We indicate a further particular case of the converse of Routh’s theorem. Suppose that 

for the steady motion qJ - . - 0 function W has no minimum and, that for values of the vari- 

ables q. arbitrarily small in absolute maguitude it can assume negative values. Consider 

the fur&ion 

In the neighbourhood of values of qi and qf arbitrarily small in absolute magnitude we 

isolate a region defined by the compatible inequalities 

(2.91 

From the equations of perturbed motion (1.2) the derivative of the function V with 
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respect to time can be expressed in the form 

V’= --H(2R2+Rl+i Qi z) 
kl 

(2.10) 

On the basis of Chetaeds instability theorem we conclade that the following theorem 

is valid. 

Theorem 2.1. If in the region (2.9) the function 
k 

2Ra+Rl+x qt + 
i=l i 

(2.11) 

is positive definite with respect to qi and qi , then the steady motion is unstable. 

Corollo~~ 2.1. If in the region (2.9) the quadratic part R(” of the expansion of R011th.f~ 

function into a Maclaarin series 

R = R(‘) + . . . (2.12) 

is positive definite, then the steady motion is anstable [ 121. 

Indeed, sabstitating (2.12) into (2.10), we have 

~=_~((2R~*)+2R,(*)-22W(‘d)+...)---_((2R(a)+...) 

which proves the assertion. Here 

RI(~)= i (2) qjqi’* 

k 

ij=l j 0 

W”‘= S ~ C*jQ*qj 

ij=l 

the row of dots representing infinitesimals of order higher than the second. 

Rem& 2.1. If R(‘) is positive definite in any safficiently small neighboarhood of 

4i - - 0, it can be shown that the above corollary is equivalent to the theorem in Section 4 

of [131. 

Remark 2.2. Other particalar cases of the converse of Roath’s theorem are shown in 

1141. 

To conclude this section we note that for a specific hypersarface C, of steady motions 

(2.2) the Hessian of potential energy (2.3) is given by 

A = A (ck+l , . . ., Ck) 

Therefore, loss of stability of steady motion and also of equilibrlam can occar only 

at critical points at which at least one of the roots of Equation (2.8) passes, in changing 

its sign, throngh zero [3 and 51. 

3. We proceed now to au investigation of the effects of dissipative forces on the 

stability of steady motion. First consider the case of the dissipative forces 

Qi= -$ (i = 1, . . .) k) 
* 

the derivatives of Rayleigh’s function 
b 

(3.1) 

(3.2) 
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which we shall assume to be a positive definite function of qi’ (i = 1, . . . , k). 

The equations of perturbed motion in this case differ from Equations (2.4) only in the 

right-hand sides of (3.1). From these equations we easily obtain the equation 

for the rate of energy dissipation. 

Theorem 3.1. If the function W has an isolated minimum for the given values of 

pa= cuand also for any sufficiently close values pa mz C, + rf2, and if the values of 

qi which make it a minimum are continuous functions of pothen the dissipative forces (3.1) 

do not destroy the stability of the steady motion corresponding to the given pa= coand any 

sufficiently close perturbed motion tends asymptotically to steady corresponding to the 

values of pa = C, + qa. 

Let us disturb the system in its steady motion under consideration by imparting to the 

points of this system small initial deviations and velocities. On its own the system will 

behave in accordance with Equations (3.3), which leads to the inequality 

R,+W(q,,c,)+W’\<R,(“)+WtqiolCa+rla) (3.4) 

where the superscript o denotes the initial value of the relevant quantity, and 

W’ = w (q,, c, + q,J - W (‘Is, %I) 

By W, we denote the smallest possible value which W (q,, car) can take if one of the 

coordinates qi becomes equal in absolute magnitude to a given arbitrarily small number 

A > 0 and the remaining positional coordinates j qi j < A. Obviously WI > W (0, ca). 

The initial values qio 

W (0) 

of the coordinates qi can be taken sufficiently small, so that 

<WI. Whatever the initial position of the system was, the initial velocities can be 

taken such that the constants R a(O), and 1 qa 1 are as small as we like. We select these 

constants to be so small that 

R 2(O) + W(O) - W’ < WI 

for all values of Iqi I< A, which is possible with the assumptions made concerning 

continuity. With this choice of initial conditions during the whole of the subsequent 

motion we shall have 

R,+ W< W, (3.5) 

It follows that Ip <WI. This ineqaality is satisfied at least while ( qi I< A. But the 

initial values of 1 qi” 1 are necessarily less than A, and since qi vary continuously with 

time, 14il cannot exceed A without fimt eqaalling this number. But from (3.5) the equalities 

lqil = A are obviously impoeeible. Stability with respect to velocities also follows from 

the inequalities (3.5). 

Consequently any perturbed motion of the system which is sufficiently close to the 

given steady motion will always occur in the arbitrarily small neighbourhood of the un- 

perturbed motion. Bnt according to Equation (3.3) the energy of the system H in perturbed 

motion is dissipated until all the positional coordinates qi are constant, and, under the 

conditions of the theorem, this is possible only for steady motion corresponding to the 
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minimum of W with perturbed values of Pa = a c +r),. Thus the theorem is proved. 

Corollary 3.1. If the function W has an isolated minimum for given cd then the steady 

motion becomes asymptotically stable when the dissipative forces (3.1) are added, pro- 

vided the values of the constants p,= cuare not altered. 

Remark 3.1. For ordinary points on the surface B when the second variation U’(‘) of 

the function W is positive definite, the above corollary becomes the theorem of Kelvin 

[Z and 51. 

Remark 3.2. When I#‘) . 1s positive definite it can easily be shown that the characte- 

istic equation for the first approximation equations for the system of equations of perturbed 

motion is of the form [ll] 

(3.6) 

where 

is the characteristic equation for the first approximation of the equations of perturbed 

motion for ~a= 0. Since when Wc2) is positive definite all the roots of the latter have ne- 

gative real parts, then for the system of equations of perturbed motion all the conditions of 

the Liapunov~a~in [IS] stability theorem are satisfied in the special case of several 

zero roots. 

Remark 3.3. The asymptotic &ability of steady motion under the conditions of 

Theorem (3.1) can also be proved by making use of the theorem of Krasovskii ([lS], par. 

103). In fact in the present case the set M (pi’ = 0 (i = 1, . . . . k)) does not contain 

whole modes of the system in arbitrarily small neighbourhood of steady motion. 

We can also prove [16] a theorem which constitutes the converse of Theorem (3.1) and 

generalizes the corresponding theorem of Kelvin [2 and 51: 

Theorem 3.2. If for a steady motion, isolated for given co, the function W has no 

minimum and if iu the sufficiently small neighbourhood, of this motion it can assume 

negative values, then the steady motion is unstable. 

As is well known [2 and 51, Kelvin introduced the important concept of secular and 

temporary stability of equilibrium positions. These concepts can evidently be extended to 

stability of steady motion. In doing so, we shall differentiate between cases when in the 

perturbed motion the system is subjected to dissipative forces which depend on the velo- 

cities only of the positional coordinates (the impulses Pa = ca + rl a remaining constant), 

and when the system is subjected to dissipative forces which depend on the velocities 

of alI the coordinates. In the first case the stability will be called ‘secular’ (in quotes) 

and in the second case, secular (without quotes). 

From Theorems (3.1) and (3.2) we obtain the obvious conditions necessary and suffi- 

cient for the *secnlaIz stability of steady motion. 

Note also that for ‘secular’ stability of steady motion as well as for positions of 

equilibrium the law of loss of stability for fixed values of parameters is valid 13 and 51. 
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Finally we shall look very briefly at the case when a system with cyclic coordinates 

is subjected to dissipative forces, derivatives of a Rayleigh function 

2F (4i.v q,‘)= 5 ei+li’qj’. fij =- const (3.8) 
i, I=1 

which is negative definite with respect to all velocities qj.(i = 1, . . . n). In this case 

steady motion is possible only if certain constant forces Ri are applied to the system 

which balance the dissipative forces in the state of steady motion under consideration 

[ 171. The equations of motion are then of the form 

(3.9) 

-7-- 

whence weobtain an equation for the rate of energy change 

Y&T-i 11)=2C-f-i Rj9j’ 

j-1 

Equations (3.9) have the obvious solution 

qi = Qi’ = 0, q; = qz= 

which describes steady motfon if for the values (3.11) the conditions 

e+h.-) -t Rj==O (;= 1, . . ., n) 
j 1 0 

(3.10) 

(3.11) 

(3.12) 

are satisfied. 

For the perturbed motion it is not difficult to obtain from Equation (3.10) the eqnation 

$ [H(2) (qi> Qi’t 5,‘) + . ..]=2F(qi’. 4,‘) (3.13) 

where the row of dots indicates terms of order not lower than the third. 

An exact repeat of the proof given by Chetaev ([s] , pp. 77-79) for the theorems of 

Kelvin shows that if the second variation If (I) of the energy of the system is a positive 

definite function of the variables qi, (Ii and [A, th en the unperturbed steady motion is 

asymptotically stable, and if H (') can assume negative values, then it is unstable [17]. 

These results have generalizations analogous to Theorems 3.1 and 3.2. 

From this follow the obvious conditions which are necessary and sufficient for secular 

stability of steady motion. 

4. Ezamplc. Consider a heavy solid body with a horizontal axis which can rotate 

about a vertical passing through the point 0 of intersection of the axis of a pendnlnm with 

a plane orthogonal to this axis and containing the csntre of gravity of the pendulum [ 10 

to 121. We take the point 0 as the origin of a fixed systam of coordinate axes 0 &~Lwith 

the <-axis directed vertically downwards and also as the origin of a moving system of 

coordinates Oxyr, the x-&s of which lies along the horizontal axis of the pendulum, the 

z-axis along a straight line passing through the centre of gravity of the pendulum and the 

y-axis orthogonal to these two axes. The angle between the [- and z-axes will be denoted 

by~andtheanglehetwaantha~ - and I-axea by cp - These two aagles completely define 



On the stability of steady motions 1099 

the position of the body in apace. We shall take the axes of x, y and z as the principal 

axes of inertia of the body for the point 0; the moments of inertia of the pendulum about 

these axes will be denoted by A, B and C, respectively. Let Mg be the weight of the 

pendulum and i > 0 the coordinate of the centre of mass along the z-axis. 

In [ll] the case is considered when A = I3 and, in addition to gravity forces, dissipat- 

ive forces are applied, which depend on 8 ‘. The first integral of the equations of motion 

ar, 
p = I =( B sin2 0 + C co9 0) cp’ = c 

o9 
(4.1) 

corresponds to the cyclic coordinate q . 

We introduce the notations 

(4.2) 

and with the accuracy to an insignificant multiplier we write the potential energy of the 

reduced system in the form 

P 
IV = 2 (1 - c, cosz (3) - cos 0 

For this pendulum u is obviously constant. 

The equation of steady motion 

arv 
i 

apcOse 
__ = sin 8 1- C2 _ a cos2e)2 (e ) = 0 (4.4) 

has the roots 8, = 0 and 8, = rr for any value of the parameter 6 and another root 6, where 

(1 --a cosz Q2 / (CL cos 0,) = I$ or 0, COEI’~ (i/ai22), if a f 1 and [ill 

Thus in the 6P-plane there are three branches Cz of the curve of steady motion, the 

first two of which are the straight lines 8 = 0 and 8 = n. Let us examine the shape of the 

third branch Sz = 8, (fi), given in the form of an implicit fuuction by the eqnation 

I@, ‘1) 
UP 

*-(I- 
cos es 

CL COS* es)2 = O 

Since p > 0 it follows that 

0-<0,<</2 if a >0, n/2<Sz<nn, if a <O, 

and 

e,= 0,~ for p = fil = (1 -a)2 i rj I-1 

(4.5) 

(4.6) 

Taking the total differential of (4.5) with respect to @ we find, that 

/& u ~09 es 
T = ( I - a COS:! e,) (1 + 3a co9 e,) sin e3 ,/,!I 

Obviously do, / d/3 = 0 only for 8, = r/z x_ 

Also, d0, i dp = x for 6, = 0, n and for co9 0z = -r/oa , provided that a< - 113. 

The parameter /3 is then given by 
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(4.7) 

Within the interval under consideration 0 < 0, < n the sign of the derivative de, / Crp 

is determined by the sign of (1 i- 3~ COS') 03)-', hence &, / c$ > 0, if u > 0 or if 

a<0 but COSW, > - i/(31); if u < 0 and co9 0, < -l/(3a ), then c10, / dp < 0. 

Note also that 0, * l l,n: as @ -+ 00. 

The approximate shape of the curve 0, = 8, (p) for various values of Q is shown in 

the figure. 

The Poincard stability coefficient for the reduced system is 

6, z iZ$jS zzz Cose8jf _(l ““,‘~~s~~~j :. UpsinS 8 1?3li_osLBs 
c J (1 - X (,OS’ es )3 

where 8, denotes one of the three values of the roots of Equation (4.4). For tile branch 

C, , 8 = 8, = 0, so that 

6, = 1 --aI (1 -a)-” 

If CL> 0, then 6, > 0 for p <p 1,and6,<Ofor~>~,.If~<0,then6,>Oforany 

value of /3 >I 0. 

For the branch C, , 8 = 8, = R, so that 

6, = - II +ap (1 --a)-21 

If~>Othen6,<Oforanyvalueof~>,O;if~<Othen$>Ofor~>~,and 

8, < 0 for p <fit. For the third branch C, , when 8 = 8,) we have 

6, = a fi sin2 8, (1 + 3% cos r 3,) (1 - u co9 OJa 

If u > 0, then 8, > 0 for any value of p > 0; if 0 > a>,- 1/3 then 8, < 0 for any value 

of p. 

6 a >o 
s!- 

A 
z 1..,- -----___ 

0 
BI 

If U < - I/J then 8, > 0 for ~09 OS > - 1/&z and pa < I?I < pi , and 8, < 0 for 

cosf 8, < - l/3 c.. 

Consequently it can be asserted that the steady motions of the pendulum are: 

(A) ‘secularly’ stable if they correspond to points: 

(1) on the branch C1 for any value of fi >/O and U< 0 or for 6 < pl, and U> 0 ; 

(2) on the branch C, for ,kl> /L$ and u < 0 ; 
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(3) on the branch C, for any value of p, if u > 0 and for* fix < 0 < & if 

a<- 1/3 and cost 8, > - 1/3 a ; 

(B) unstable if they correspond to points : 

(1) on the branch C, for /!I > p1 and u > 0 ; 

(2) on the branch C, for /3 <or an d CL < 0 or for any value of /!? if CL > 0 ; 

(3) on the branch C, for any value of ,8 if 0 > U. >/- t/3 or if CL < - t/3 and 

co52 e3 > - 1/3r; 

In the figure the regions of stability are denoted by small circles. Points 

M, (0 = 0, p = pi) and Ma (0 = rt, p = fit) are bifurcation points; the point 

M, (0 = Oar @ = fl,) is also critical and loss of stability on the corresponding branches 

takes place at these points. Note also that the tangents to the branch C, at the points Mi 

are parallel to the axis /3 = 0, i.e. these points are limiting point [6] for the branch C, . 

It is also easy to check that the law of loss of stability is satisfied for fixed values of 

the parameter p. 

In [ll] a figure is given (Fig. 2) for the case of A = B, -1 <a < -t/a , which 

shows curves of steady motions in the 8 a-plane. For 1 a] -1 < 8 < v/3 10 ) -1 steady 

motions corresponding to points on all three branches are fonnd to be stable, which would 

appear to contradict the law of loss of stability for a fixed value of fl and canses, as it 

were, an ‘unusual’ nature of bifurcation. In fact the curves should be drawn in the ea- 

plane (see Figure) since the constant parameter here is p, not R. 

Note that the bifurcation of the kind considered here is encountered, for example, in 

the theory of equilibrium curves for a rotating liquid [6]. 

We consider finally the question of the stability of steady motion of a pendnlum when, 

apart from gravity, it is subjected to dissipative forces with total dissipation and constant 

forces which balance the dissipative forces in the steady state. 

With the notations of (4.2), we find that 

aw 1 SW sin 0 cos 8 
r= I- u cos2 8 ’ 

r = - 2ac 
00 ac (1 - a cost ey 

It can easily be seen that the sign of 

_coincides with the sign of 6, for 8 = 8, = 0 and 8 = 8, = II and with the sign of u for 

f3=& 

Consequently, nnder the action of dissipative forces with total dissipation and of 

constant forces balancing the dissipative, steady motions corresponding to points: on the 

branch C, for any value of p > 0 and u < 0 or for p < p i and u > 0, on the branch C, for 

p > & and u < 0 and on the branch C, for u > 0 are secularly stable, and those correspond- 

ing to all other points on the branches C, are unstable. 

* Note that the assertion made in the last two lines of [ 121 is valid with the exception 
of this case. 
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